Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fang-Fang Jian,^a* Zheng-Shuai Bai,^a Kai Li^b and Hai-Lian Xiao^a

^aNew Materials and Function, Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Comment

and describe its structure here.

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.003 Å R factor = 0.034 wR factor = 0.084 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved (I) In the title compound (Fig. 1), the C–S bond length is within the values observed for a C—S double bond. Atom C9 lies in the plane of the triazole ring (N4/N5/N6/C10/C11) (plane p1). The dihedral angles formed by the 2*H*-1,2,4-triazole-3-thione and phenyl rings with p1 are 83.4 (1) and 17.8 (1)°, respectively. The dihedral angle between the 2*H*-

lies in the plane of the triazole ring (N4/N5/N6/C10/C11) (plane p1). The dihedral angles formed by the 2H-1,2,4-triazole-3-thione and phenyl rings with p1 are 83.4 (1) and 17.8 (1)°, respectively. The dihedral angle between the 2H-1,2,4-triazole-3-thione and phenyl rings is 84.7 (3)°. The conformation of the molecule, with nearly parallel triazole and phenyl rings, strongly suggests the presence of intramolecular π - π interactions between these planes (Glusker *et al.*, 1994; Xu, Jian, Cao *et al.*, 2004; Xu, Jian, Qin *et al.*, 2004). The centroid–centroid distance, 3.662 (3) Å, and angle between the ring normal to the phenyl plane and the above centroid vector, 22.4 (2)°, are consistent with π - π interactions (Janiak, 2000).

There is an $N-H \cdots N$ intermolecular interaction (see Table 2), resulting in a two-dimensional network which develops parallel to the *a* direction (Fig. 2). The molecular

4-Phenyl-3-[(1*H*-1,2,4-triazol-1-yl)methyl]-1*H*-1,2,4-triazole-5-thione

The title compound, $C_{11}H_{10}N_6S$, was prepared by the reaction of ethyl 2-(1*H*-1,2,4-triazol-1-yl)acetate with hydrazine and phenyl isothiocyanate. The molecular structure and packing are stabilized by an N-H···N intermolecular hydrogen-bond and C-H··· π interactions.

Recently, compounds containing the 1H-1,2,4-triazole group

have attracted much interest because they exhibit some

fungicidal activity and plant-growth regulating activity (Xu et al., 2002), and show antibacterial activity against *Puccinia* recondite and root-growth regulation for cucumber (Zhao et al., 1998). As part of our search for new triazole compounds

with higher bioactivity, we synthesized the title compound, (I),

Received 10 January 2005 Accepted 14 January 2005 Online 22 January 2005

organic papers

structure is also stabilized by intermolecular $C-H\cdots\pi$ interactions (Jeffrey *et al.*, 1985; Xu, Jian, Cao *et al.*, 2004; Xu, Jian, Qin *et al.*, 2004) (Table 2).

Experimental

The title compound was prepared by the reaction of ethyl 2-(1H-1,2,4-triazol-1-yl) acetate (5.50 g, 0.02 mol) with hydrazine (0.6 g, 0.02 mol) and phenyl isothiocyanate (2.24 g, 0.02 mol) in NaOH solution (30 ml). Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from dimethylformamide solution at room temperature.

 $D_{\rm r} = 1.437 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 25

 $0.35 \times 0.25 \times 0.20$ mm

Mo $K\alpha$ radiation

reflections

 $\mu = 0.26 \text{ mm}^{-1}$

T = 295 (2) K

Block, yellow

 $\begin{array}{l} \theta_{\max} = 25.0^{\circ} \\ h = 0 \rightarrow 10 \end{array}$

 $k = -11 \rightarrow 11$

 $l = -16 \rightarrow 16$

3 standard reflections

every 100 reflections

intensity decay: 0.1%

 $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2]$

Extinction correction: *SHELXL*97 Extinction coefficient: 0.0035 (7)

 $+ 2F_c^2)/3$

+ 0.2841P] where $P = (F_o^2)^2$

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.17$ e Å

 $\theta = 4 - 14^{\circ}$

Crystal data

C₁₁H₁₀N₆S $M_r = 258.31$ Monoclinic, $P2_1/c$ a = 9.0010 (18) Å b = 9.5510 (19) Å c = 14.251 (3) Å $\beta = 102.94$ (3)° V = 1194.0 (4) Å³ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: none 4343 measured reflections 2104 independent reflections 1449 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.084$ S = 1.022104 reflections 164 parameters H-atom parameters constrained

 Table 1

 Selected bond lengths (Å).

S1-C7	1.669 (2)	N4-C11	1.328 (2)
N1-C8	1.381 (3)	N4-N5	1.364 (2)
N1-C7	1.382 (2)	N4-C9	1.451 (2)
N1-C6	1.447 (2)	N5-C10	1.314 (3)
N2-C7	1.335 (3)	N6-C11	1.321 (3)
N2-N3	1.376 (2)	N6-C10	1.350 (3)
N3-C8	1.295 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots N6^{i}$	0.86	1.96	2.794 (2)	164
$C1 - H1A \cdots Cg1^{ii}$	0.93	2.99	3.843 (2)	153
$C4-H4A\cdots Cg2^{iii}$	0.93	2.98	3.395 (2)	108
$C5-H5B\cdots Cg1^{iv}$	0.93	2.83	3.490 (2)	129

Symmetry codes: (i) x - 1, y, z; (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (iv) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$. Notes: *Cg*1 and *Cg*2 are the centroids of the N1/C7/N2/N3/C8 and N4/N5/C10/N6/C11 rings, respectively.

Figure 1

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

View of the packing in the structure of (I), showing the N-H···N and C-H·· π interactions (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$ (carrier atom).

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2002B06).

References

Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Glusker, J. P., Lewis, M. & Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publishers Inc.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–341.
- Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Xu, L.-Z., Jian, F.-F., Cao, K.-G. & Wang, Z.-W. (2004). Chin. J. Struct. Chem.
- **23**, 739–742. Xu, L.-Z., Jian, F.-F., Qin, Y.-Q., Yu, G.-P. & Jiao, K. (2004). *Chem. Res. Chin.*
- Univ. 20, 305–307.
- Xu, L.-Z., Zhang, S.-S., Li, H.-J. & Jiao, K. (2002). *Chem. Res. Chin. Univ.* 18, 284–286.
- Zhao, G.-F., Jin, G.-Y., Liu, Z.-F., Ren, J. & Li, Y.-C. (1998). Chin. J. Chem. 16, 363–366.