Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fang-Fang Jian, ${ }^{\text {a }}$ * Zheng-Shuai

 Bai, ${ }^{\text {a }}$ Kai Li ${ }^{\text {b }}$ and Hai-Lian Xiao ${ }^{\text {a }}$${ }^{\mathrm{a}}$ New Materials and Function, Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.084$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Phenyl-3-[(1H-1,2,4-triazol-1-yl)methyl]-1H-1,2,4-triazole-5-thione

The title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}$, was prepared by the reaction of ethyl 2-(1H-1,2,4-triazol-1-yl)acetate with hydrazine and phenyl isothiocyanate. The molecular structure and packing are stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen-bond and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Recently, compounds containing the $1 H-1,2,4$-triazole group have attracted much interest because they exhibit some fungicidal activity and plant-growth regulating activity (Xu et al., 2002), and show antibacterial activity against Puccinia recondite and root-growth regulation for cucumber (Zhao et al., 1998). As part of our search for new triazole compounds with higher bioactivity, we synthesized the title compound, (I), and describe its structure here.

(I)

In the title compound (Fig. 1), the $\mathrm{C}-\mathrm{S}$ bond length is within the values observed for a $\mathrm{C}=\mathrm{S}$ double bond. Atom C 9 lies in the plane of the triazole ring (N4/N5/N6/C10/C11) (plane $p 1$). The dihedral angles formed by the $2 H-1,2,4$-tria-zole-3-thione and phenyl rings with $p 1$ are 83.4 (1) and $17.8(1)^{\circ}$, respectively. The dihedral angle between the 2 H -$1,2,4$-triazole-3-thione and phenyl rings is 84.7 (3) ${ }^{\circ}$. The conformation of the molecule, with nearly parallel triazole and phenyl rings, strongly suggests the presence of intramolecular $\pi-\pi$ interactions between these planes (Glusker et al., 1994; Xu, Jian, Cao et al., 2004; Xu, Jian, Qin et al., 2004). The centroid-centroid distance, 3.662 (3) \AA, and angle between the ring normal to the phenyl plane and the above centroid vector, $22.4(2)^{\circ}$, are consistent with $\pi-\pi$ interactions (Janiak, 2000).

There is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interaction (see Table 2), resulting in a two-dimensional network which develops parallel to the a direction (Fig. 2). The molecular

Received 10 January 2005
Accepted 14 January 2005 Online 22 January 2005
structure is also stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Jeffrey et al., 1985; Xu, Jian, Cao et al., 2004; Xu, Jian, Qin et al., 2004) (Table 2).

Experimental

The title compound was prepared by the reaction of ethyl 2-(1H-1,2,4-triazol-1-yl)acetate ($5.50 \mathrm{~g}, 0.02 \mathrm{~mol}$) with hydrazine ($0.6 \mathrm{~g}, 0.02$ $\mathrm{mol})$ and phenyl isothiocyanate ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$) in NaOH solution (30 ml). Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from dimethylformamide solution at room temperature.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}$
$M_{r}=258.31$
Monoclinic, $P 2_{1} / c$
$a=9.0010(18) \AA$
$b=9.5510(19) \AA$
$c=14.251(3) \AA$
$\beta=102.94(3)^{\circ}$
$V=1194.0(4) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: none
4343 measured reflections
2104 independent reflections
1449 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.084$
$S=1.02$
2104 reflections
164 parameters
H -atom parameters constrained
$D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=4-14^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-16 \rightarrow 16$
3 standard reflections every 100 reflections intensity decay: 0.1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0347 P)^{2}\right. \\
& +0.2841 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\mathrm{m}} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0035 \text { (7) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

S1-C7	$1.669(2)$	N4-C11	$1.328(2)$
N1-C8	$1.381(3)$	N4-N5	$1.364(2)$
N1-C7	$1.382(2)$	N4-C9	$1.451(2)$
N1-C6	$1.447(2)$	N5-C10	$1.314(3)$
N2-C7	$1.335(3)$	N6-C11	$1.321(3)$
N2-N3	$1.376(2)$	N6-C10	$1.350(3)$
N3-C8	$1.295(2)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 6^{\text {i }}$	0.86	1.96	2.794 (2)	164
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cg} 1^{\text {ii }}$	0.93	2.99	3.843 (2)	153
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cg} 2^{\text {iii }}$	0.93	2.98	3.395 (2)	108
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.83	3.490 (2)	129

Symmetry codes: (i) $x-1, y, z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$. Notes: $C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 8$ and $\mathrm{N} 4 / \mathrm{N} 5 / \mathrm{C} 10 / \mathrm{N} 6 / \mathrm{C} 11$ rings, respectively.

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
View of the packing in the structure of (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2002B06).

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Glusker, J. P., Lewis, M. \& Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publishers Inc.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Jeffrey, G. A., Maluszynska, H. \& Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-341.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Xu, L.-Z., Jian, F.-F., Cao, K.-G. \& Wang, Z.-W. (2004). Chin. J. Struct. Chem. 23, 739-742.
Xu, L.-Z., Jian, F.-F., Qin, Y.-Q., Yu, G.-P. \& Jiao, K. (2004). Chem. Res. Chin. Univ. 20, 305-307.
Xu, L.-Z., Zhang, S.-S., Li, H.-J. \& Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.
Zhao, G.-F., Jin, G.-Y., Liu, Z.-F., Ren, J. \& Li, Y.-C. (1998). Chin. J. Chem. 16, 363-366.

